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ABSTRACT 

Let C ( G )  denote the number of spanning trees of a graph G .  It is shown that there is a 
function ~ ( k )  that tends to zero as k tends to infinity such that for every connected, 
k-regular simple graph G on n vertices C ( G )  = {k[l - u(G)]}",  where 0 I u ( G )  I ~ ( k ) .  

1. INTRODUCTION 

What is the minimum possible number of spanning trees of a k-regular connected 
simple graph on n vertices? This problem was suggested to me by P. Sarnak. His 
motivation came from number theory; there are many constructions of regular, 
connected graphs coming from number theoretic considerations (see, e.g., [8], 
[9]). In some of these constructions, one can obtain an expression for the class 
number of a certain function field in terms of the number of spanning trees of the 
corresponding graph. Therefore, the study of class numbers of function fields 
leads to a study of the number of spanning trees in regular, connected graphs. 

All graphs considered here are finite, undirected, and simple, i.e., have no 
loops and no multiple edges, unless otherwise specified. The complexity of a 
graph G, denoted by C(G), is the number of spanning trees of G (0 if G is 
disconnected). As will be shown in the next section, for k 2 3 the complexity of 
any k-regular connected graph G on n vertices is exponential in n .  We thus 
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define, for a graph G with n vertices, its complexity exponent by c(G) = [C(G)]'/". 
In [lo], McKay proved that for every fixed k 2 3, when G = (V(G) ,  E(G))  ranges 
over all k-regular connected graphs 

The determination of the corresponding lirn inf seems more difficult. For k 2 3 
define c(k)  = lim inf c(G),  where G = (V(G),  E(G)) ranges over all k-regular 

connected graphs. 
/V(G)/-m 

Our main result is the following. 

Theorem 1.1. 
n vertices is at least 

The number of spanning trees of any k-regular connected graph on 

k" 
2 0 ( n ( l o g  log k ) 4 l o g  k )  . 

Therefore, c(k) 2 k - O(k(1og log k)*/log k). 

We also observe that for every k 2 3, 
k - @(log k) and that for infinitely many values of k 

c(k) 5 [ ( k  + l)k-2(k - l)] l i(k+l) = 

~ ( k )  5 k - a(*) . 

Thus, when k tends to infinity, c(k) = k - o(k). 
Moreover, since it is easy to show that any k-regular connected graph on n 

vertices contains less than k" spanning trees, it follows that as k grows the 
complexity of any k-regular connected graph on n vertices is (k - o(k))", i.e., in 
some (weak) sense, the complexity of any k-regular connected graph G on n 
vertices does not depend too much on the structure of G and its asymptotic 
behavior is only a function of n and k. 

2. THE COMPLEXITY OF REGULAR CONNECTED GRAPHS 

It is not too difficult to show that the number c(k) defined as a lim inf is in fact 

c(k) = inf c(G) , (2.1) 

where the infimum is taken over all k-regular, connected graphs G. To see this, 
consider an arbitrary, fixed, k-regular, connected graph G on r vertices and let uu 
be an edge of G such that G - uu is connected (there is always such an edge as G 
contains a cycle). For each integer m 2 2, let H,, H, ,  . . . , H m _ l  be m copies of 
G - uu and let ui and ui be the vertices of Hi corresponding to u and u ,  
respectively, 0 5 i < m. Let G, be the graph obtained from the disjoint union of 
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H,, . . . , H,-, by adding to it the edges u p i + ,  ( O r  i < m), where the indices are 
reduced mod m. Obviously G, is a k-regular, connected graph on rn . r vertices. 
Its complexity C(G,) satisfies 

C(G,) = m[C(G - UU)]" + m[C(G - U U ) ] ~ - '  * R ( G )  , 

where R ( G )  is the number of spanning forests of G - uu with two connected 
components, one containing u and the other containing u .  Since C(G - uu) I 
C( G )  and R( G )  5 C( G ) ,  this implies that C( G,) 5 2m[ C( G)]" and hence 
c(G,) 5 (2m)limr c(G).  By letting m tend to infinity, we conclude that c ( k ) r  
c(G),  and (2.1) follows. Observe that since R(G)limr tends to 1 as m tends to 
infinity the proof actually implies that for every k-regular, connected G and every 
edge uu of G which is not a bridge, 

(2.2) c(k) 5 c(G - UU) . 

By the well-known Kirchhoff formula (see, e.g., [3]), for every connected 
graph G on n vertices C( G )  = ( 1  / n )  IIyL: A;, where A,,  . . . , A, - are the nonzero 
eigenvalues of the Laplace matrix ( quv)u,uEV of G = (V, E )  defined by q,, = deg u 
and q,,=-l for u # u ,  u u E E ,  q,,=O for u # u ,  u u g E .  Let H = ( h , )  be a 
Hadamard matrix of order n ,  that is, an n X n matrix of 21's satisfying H H T  = nZ. 
It is well known that such matrices exist for all n = 2' (and it is conjectured that 
they exist for all n divisible by 4; see, e.g. [7]).  By inverting, if necessary, the 
signs of some of the rows or columns of H ,  we may assume that h,, = 1 for 
1 r j 5 n and hi, = 1 for 1 I i 5 n. We can now define a bipartite graph G on the 
classes of vertices A = B = (2 ,  . . . , n }  where i E A is joined to j E B iff h, = -1. 
This graph has 2(n - 1) vertices, is regular of degree k = n / 2  and it is easy to 
show (see, e.g., [l]) that the nonzero eigenvalues of its Laplace matrix are n (with 
multiplicity 1) and n / 2  k f i / 2 ,  each with multiplicity n - 2. In view of Kirch- 
hoff's formula this implies that c(G) = [1+ o ( l ) ] ( n / 2  - f i / 4 )  = [1+ o ( l ) ] ( k  - 
n(fi)>. Other examples showing that c ( k ) r  k - a ( f i )  can be obtained from 
other symmetric designs, including, e.g., the hyperplanes versus points incidence 
graphs of projective geometries, or the well-known Paley graphs (see, e.g., [ l ] ) .  
This, together with (2.  l ) ,  implies the following statement. 

Proposition 2.1. For infinitely many values of k 

~ ( k )  5 k - O ( f i )  . rn 

Next we make some simple observations that supply bounds for c(k) for small 
values of k. First we observe that for every k 2 3 (and in particular for k = 3) 
c(k) 2 a. To see this, let G be a k-regular connected graph on n vertices, with 
k 2 3 .  We claim that C(G)  > 2,12. Indeed, by the well-known theorem of Nash- 
Williams [ l l ] ,  all edges of G can be covered by [(k + 1)/21 trees. Let TI be one 
of these trees. Then E(G)  - E ( T l )  is a set of i k n  - ( n  - 1 )  edges, and it is 
contained in the union of the [(k - 1) / 2 ]  other trees. Thus, at least one tree has at 
least [ $kn - ( n  - 1)]/ [(k - 1 ) / 2 ]  > n / 2  of these edges. Let F be the set of these 
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edges contained in this tree. Every subset S C F can be completed to a spanning 
tree of G by adding only edges of T , .  It follows that for every S C F there is a 
spanning tree T,  of G so that E(T,) f l  F = S. Thus C(G) 2 2 l F '  and hence 
c(k) I fi for all k 2 3, as claimed. 

Another simple observation is that for every k I 3, c(k) 5 [ ( k  + l)k-2(k - 
l)]l'(k+l). In view of (2.2), this would follow from the existence of a k-regular 
graph G such that G - uu is connected for some edge uu and c(G - uu) = 
[ (k  + l)k-2(k - l)]l'(k+l). Let G be the complete graph on k + 1 vertices. By the 
well-known theorem of Cayley (cf., e.g., [3]), C ( G )  = (k + l)k-l. By symmetry, 
for every edge uu of G, 

k - l ( k ( k + 1 ) - 2 k )  = (k + l)k-2(k - 1) C(G - UU) = C ( G ) . ( l -  k/( 'l:')) = (k + 1) k ( k + 1 )  

and hence c(G - uu) = [ ( k  + l)k-2(k - l)]l'(k+l), as needed. 
We summarize the last two observations in the following claim. 

Proposition 2.2. For every k 2 3 

fi 5 c(k) 5 [(k + 1)"'(k - l)]l '(k+l) . 

Finally, we prove Theorem 1.1, which shows that in fact for large k, c(k) = 
[ l -  o(l)]k. 

Proof of Theorem 1.1. Throughout the proof we assume, whenever it is needed, 
that k is sufficiently large. All logarithms in this proof are in base 2. 

Let G = (V, E )  be an arbitrary k-regular, connected graph on n vertices. For 
each vertex u E V choose, randomly (with a uniform distribution on the k edges 
incident with u )  and independently, an edge incident with u and orient it from u 
outwards. This gives a random oriented subgraph H of G (in which some edges 
may appear twice; oriented in the opposite directions). One can easily check that 
every connected component K of H is a connected graph with a unique directed 
cycle (which may be a cycle of length 2). Moreover, given the edges of K 
(including the one that appears twice, if there is such an edge), there are at most 
two possible orientations of the edges of K corresponding to the actual choice of 
edges. (Only the orientation of the directed cycle need be chosen, as the other 
edges are necessarily oriented towards the cycle). 

Put g = log k/(10 log log k ) .  For every integer r ,  2 I r 5 g ,  the expected num- 
ber of connected components with r vertices in the randomly chosen graph H does 
not exceed 

n(kr)r-l - r2 n <-.  
k' <k 

This is because there are n choices for the first vertex of the component. The 
other r - 1 vertices can be chosen so that each vertex is a neighbor (in G)  of one 
of the previous ones. Consequently, there are less than kr choices for each such 
new vertex. This covers the choice of all r vertices of the component and r - 1 of 
its edges. The last edge has at most ( i )  choices, and the number of possible 
orientations is either 1 or 2. Hence, there are less than n(kr)'-' . r2 choices for an 
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oriented component, and the probability that its r edges will indeed be chosen is 
l lk' .  This implies (2 .3) .  In view of ( 2 . 3 ) ,  the expected number of connected 
components of size at most g in H does not exceed g n / a  < nl2g. Thus, the 
probability that H has less than nlg such components is at least 1 .  This means that 
there are at least f k" possible choices for the oriented H ,  so that it has less than 
nlg connected components of size at most g. For each such H we associate a 
forest FH by deleting an arbitrary edge from the unique cycle of each connected 
component. Notice that FH has less than 2nlg connected components (as it has 
less than nlg components of size s g ,  and, of course, less than nlg components of 
size >g). Thus, the number of edges IE(FH)I of FH satisfies 

We claim that the same forest FH cannot be obtained from too many oriented 
subgraphs H .  Indeed, given F H ,  in order to know H we have to know the edge 
deleted from each component of H and the orientation in each component. If a 
component has r vertices, then there are less than ( i )  choices for the deleted 
edges in it, and at most 2 possible orientations. Thus the number of subgraphs H 
that may give the same FH is at most the product of the squares of the sizes of the 
connected components. The contribution of the small components to this product 
is at most g2"'g. The contribution of the large ones is also at most g2"lg (as g 2 3, 
the product of numbers whose sum is at most n and each exceeds g is at most 
$ I g ) .  It follows that the number of forests of size at least n - 2nlg in G is at least 

However, each forest is contained in a spanning tree of G, and each tree contains 
at most Z;:? ( " ; ) forests of size at least n - 2 n / g .  By the standard estimates for 
binomial distributions (see, e.g., [ 5 ] )  

where here H(x)  = -x log2x - (1 - x) log,(l - x) is the binary entropy function. 
Combining ( 2 . 5 )  and (2 .6 ) ,  we conclude that the total number of spanning 

trees of G is at least 

k" - 1 k" 
2 g 8 n l g  21+8nlogg/g . 

Substituting g = log kl10 log log k ,  the assertion of the theorem follows. 

3. CONCLUDING REMARKS 

1. The first step in the proof of Theorem 1.1 shows that for every k-regular 
graph G on n vertices C( G) 5 (1 / ( n  - 1))k". This is because by choosing a 
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single edge emanating from every vertex we obtain each tree as an oriented 
subgraph, with one edge taken in both directions exactly n - 1 times. It is 
well known (cf., e.g., [2]) that Kirchhoff's formula implies the slightly better 
bound 

1 nk "-' e 
C ( G ) s  (n-l) < - n k"-' 

Indeed, the trace of the Laplace matrix of G is kn and hence the sum of its 
n - 1 nonnegative eigenvalues A , ,  . . . , hnp1 is kn, implying, by the arith- 
metic-geometric inequality, that 

1 "-I 1 nk n- '  

n i = l  n n - 1  
C(G)= - hi 5 - (-) 

The bound of McKay [lo], stated in the Introduction, shows that in fact, for 
large n,  C(G) is a little smaller. Each of these estimates together with 
Theorem 1.1 shows that for any k-regular, connected graph G on n vertices, 
C(G) = [k - ~ ( k ) ] " .  

2. One may study the minimum possible complexity of nonsimple k-regular 
connected graphs. If loops are allowed then trivially, for any odd k and any 
even n there is a k-regular connected graph on n vertices with a unique 
spanning tree. We are thus left with the question of estimating c'(k) = 
lim inflV(G),+p[ C(G)]"", where G ranges over all k-regular, connected 
graphs on n vertices which contain no loops but may have parallel edges. 
The graph on two vertices with k edges between them [and the fact that the 
equality analogous to (2.1) holds for c ' (k)  too] shows that c'(k) = O ( f i ) .  
On the other hand, we can show that c'(k)  = O(L/5;). To see this, observe, 
first, that since any spanning tree contains less than 2" forests and any forest 
is contained in a spanning tree, it suffices to show that any k-regular 
connected multigraph on n vertices with no loops contains at least [a(%%)]" 
forests. This can be shown by a simple modification of the first part in the 
proof of Theorem 1.1. A somewhat stronger result is the fact that any such 
graph G contains at least [ f z ( f i ) ] "  linear forests, i.e., forests in which every 
connected component is a path. This is a simple consequence of the Van der 
Waerden conjecture, proved in [6] and [4]. By applying it to the permanent 
of the adjacency matrix of G, we conclude that G contains at least [a(k)]" 
spanning 2-factors, and by deleting an edge from each cycle in each of these 
2-factors we obtain the desired estimate for the number of linear forests. We 
omit the details. 

3. It would be interesting (and seems to be difficult) to determine c(k) 
precisely for each k 2 3. U 
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